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A detailed statistical analysis of turbulent flow and heat transfer in eccentric annular
duct was performed via direct numerical simulations (DNS) with particular emphasis
on the needs of turbulence closure models. A large number of flow characteristics
such as components of the Reynolds stress tensor, temperature–velocity correlations
and some others were obtained for the first time for such kind of a flow. The results
of the paper will serve as a benchmark test case for turbulence modelling, specifically
for models intended to be used for flows with partly turbulent regimes.

1. Introduction
Consider the pressure-gradient-driven fluid flow along the gap between two parallel

but eccentric cylinders of different radii, r1 and r2 > r1 (see the sketch in figure 1a).
If eccentricity e = s/(r2 − r1) is large enough, then the width of the gap in the
narrow part of the duct (r2 − r1) − s will be considerably less than that in the wide
part (r2 − r1) + s. Consequently, the fluid velocity in the narrow gap will be less
and the local Reynolds number will be significantly less than those in the wide gap.
The geometrical parameters may be chosen in such a way that the local Reynolds
number in the narrow gap will be too small to sustain turbulence, no matter how
large is the global Reynolds number Re = 2(r2 − r1)Ub/ν (here, 2(r2 − r1) is the
hydraulic diameter and Ub is the bulk velocity). In the recent numerical study by
Nikitin (2006a), it was indeed shown that two different flow regimes, namely fully
turbulent and partly turbulent, may exist at the same Reynolds number but different
geometrical configurations (see figure 1).

An eccentric annular duct is a prototype element in a number of engineering
applications. Close-packed tubular heat exchangers and coolant channels of nuclear
reactor containing clusters of fuel pins are few examples. A considerable experimental
and modelling effort has been devoted to determining both the details of the flow
field and heat transfer characteristics for such kind of a flow. Deissler & Taylor
(1955) derived an analytical model assuming that the universal velocity profile for
circular tube can be applied along lines normal to the bounding walls of the annular
duct. Experimental determination of friction factor for relatively large diameter-ratio
ducts (γ = r1/r2 = 0.688, 0.75, 0.875) was reported by Dodge (1963). Wolffe (1962)
measured velocity profiles along lines perpendicular to the outer bounding wall in an
annulus with diameter ratio 0.65 and eccentricity 0.46. A wide-ranging experimental
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Figure 1. (a) Sketch of the duct’s cross-section and computational mesh (every 16th grid
line is shown in each direction). Contours of r.m.s. velocity fluctuations at Re = 4000 and
s/(r2 − r1) = 1/2 (Nikitin 2006a): (b) fully turbulent flow (r1/r2 = 1/2); (c) partly turbulent
flow (r1/r2 = 2/3).

study aimed at determining friction factor characteristics and details of the flow
field was conducted by Jonsson & Sparrow (1966). The experiments were performed
utilizing three annular ducts of different diameter ratios; in each case eccentricity
was varied from zero to unity. The experimental study of turbulent flow in a circular
pipe containing one or two rods located off-centre was described in Kacker (1973).
Mean velocity measurements were obtained and secondary-flow velocities of the
order of 1 % of the mean velocity were observed. Some analytical observations using
a bipolar coordinate system was presented in Usui & Tsuruta (1980). Ogino, Sakano
& Mizushina (1987) performed an analysis and measurements of momentum and heat
transfer from turbulent flow in an eccentric annulus to inner and outer tube walls.
Three components of mean velocity and the corresponding Reynolds shear stresses
were measured by Nouri, Umur & Whitelaw (1993) in concentric and eccentric
annulus flows of Newtonian and non-Newtonian fluid.

From a fundamental point of view, turbulent flow in eccentric annular ducts
is interesting in several respects. First, it is an ideal model for investigating
inhomogeneous turbulent flows, where the conditions of turbulence production vary
significantly within the cross-section. Second, it represents a convenient model to study
the peculiarities of the flow in the neighbourhood of the laminar/turbulent interface
and the related entrainment phenomenon. Third, it may serve as a benchmark test
case for turbulence modelling, specifically for models intended to be used for flows
with partly turbulent regimes.

The main investigative approach in the present paper is direct numerical simulations
(DNS). During the last decades, DNS has been recognized as a powerful and reliable
tool for studying the basic physics of turbulent flows. Numerous examples showed
that results obtained by DNS are in excellent agreement with experimental findings,
if the latter are reliable (see Moin & Mahesh 1998). In some respects DNS-based
studies are even more advantageous than experimental ones since far more detailed
information on the flow field structure can be achieved.

However, one major difficulty that arises with a numerical investigation of turbulent
flow is the presence of a vast continuous range of relevant scales of motion which
must be correctly resolved by numerical simulation. That is why most DNS-based
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works are restricted to relatively low Reynolds number and focus on simple-geometry
flows for which accurate and efficient numerical algorithms exist. For wall-bounded
turbulent flows, the majority of successful DNS-based studies dealt with the simplest
geometry cases such as a plane channel, a flat plate boundary layer, a circular pipe
and some other similar cases (see Kim, Moin & Moser 1987; Spalart 1988; Eggels
et al. 1994; Nikitin 1994, 1996).

The turbulent flows listed above are one-dimensional in the mean. Meanwhile,
two-dimensional (in the mean) turbulent flows, such as flows in non-circular ducts
are interesting not only in engineering but also in fundamental aspects. In particular,
they are distinguished by the presence of secondary mean motions in the plane
perpendicular to the streamwise flow direction, which are known as secondary motions
of Prandtl’s second kind.

For an infinitely long straight duct of arbitrary cross-section the incompressible
Navier–Stokes equations always have an exact laminar steady solution with only one
non-zero streamwise velocity component, which depends on transversal coordinates
only. For the eccentric annular pipe considered here, laminar solution is given, for
example, by Wilson (1978). Since transversal velocity components are zero in laminar
solution, laminar flows in ducts of arbitrary cross-section do not exhibit secondary
flows. In turbulent flow the anisotropy of Reynolds stresses in the circumferential
direction causes the appearance of a secondary motion in the cross-sectional plane
of the duct. Such motions are an intrinsic feature of turbulent flow in non-circular
ducts (see Bradshaw 1987). Despite the fact that the secondary velocity usually is
only 1 %–2 % of the streamwise bulk velocity, secondary motions play a significant
role, since they result in the cross-stream transfer of momentum, heat and mass (see
Demuren & Rodi 1984; Nikitin & Yakhot 2005). The development of turbulence
closure models that can reliably predict turbulence-driven secondary motions in non-
circular ducts is currently not feasible due to the lack of detailed experimental data.
Reported DNS-based studies mainly relate to turbulent flows through straight ducts
of rectangular cross-section (see Gavrilakis 1992; Huser & Biringen 1993; Nikitin
1997). The recent papers by Nikitin & Yakhot (2005) and Voronova & Nikitin (2007),
where detailed DNS results of turbulent flow in elliptical ducts were reported, are the
rare exception.

Regarding the eccentric annulus flow, first DNS studies were performed by Nikitin
(2006a) and Ninokata et al. (2006). Nikitin (2006a) considered two geometrical cases
with diameter ratios γ = 1/2 and 2/3 at Reynolds number Re = 4000 and eccentricity
e = 1/2 in both cases. Two distinct flow regimes, fully turbulent and partly turbulent,
were detected in these cases. Mean velocity, turbulence intensity and secondary-motion
patterns were obtained in simulations. Ninokata et al. (2006) reported preliminary
DNS results for the flow at Re = 12 100 in the duct with γ = e = 1/2.

The aim of the present work is to provide a comprehensive DNS-based data of
turbulent flow and heat transfer in eccentric annulus when the turbulent flow occupies
the entire duct’s cross-section.

2. Formulation and numerical method
We consider non-isothermal flow of an incompressible viscous fluid through an

eccentric annular duct (x, y and z are Cartesian coordinates)

G = {(x, y, z) : (x − x1)
2 + y2 � r2

1 ∩ (x − x2)
2 + y2 � r2

2 , |z| < ∞}. (2.1)
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The flow is governed by the Navier–Stokes and energy equations (with thermal
dissipation neglected)

∂u
∂t

= u × rot u − ν rot rot u − grad

(
p

ρ
+

|u|2
2

)
− k

1

ρ

dp̂

dz
, (2.2)

ρcp

(
∂T

∂t
+ div (T u)

)
= κ div grad T , (2.3)

subjected to the incompressibility constraint

div u = 0. (2.4)

Here, u is the velocity field, p is the pressure, ρ is the fluid density, ν is the kinematic
viscosity, κ and cp are the thermal conductivity and specific heat of the fluid, k is
the unit vector in the z-direction. We imply the no-slip boundary condition at the
rigid duct’s walls and periodic boundary conditions in the streamwise z-direction. The
inner and outer cylinders are assumed to be isothermal with the temperatures T1 and
T2, respectively. In (2.3), T stands for the temperature difference between the fluid
particle and the inner cylinder wall. Thus, T = 0 on the inner wall and T = T2 − T1

on the outer one. In (2.2), we split the pressure gradient into two terms, where, due to
the implied periodicity, the first (grad p) does not contribute to the overall pressure
drop. In order to maintain a constant flow rate Q0, the mean pressure gradient dp̂/dz

is determined at each time instant from the constraint∫ ∫
Ω

uz(x, y, z, t)dxdy = Q0 = constant. (2.5)

In (2.5), Ω denotes the duct’s cross-section, and the integral does not depend on z

due to incompressibility.
The problem is solved using curvilinear bipolar coordinates (ξ, η) introduced in the

cross-sectional plane of the duct

x = −λ(ξ, η) sinh ξ, y = λ(ξ, η) sin η, λ(ξ, η) =
c

cosh ξ − cos η
, (2.6)

where c = [(r2
2 − r2

1 − s2)2/(4s2) − r2
1 ]

1/2. The bipolar coordinates vary in the range
0 � η � 2π and ξ1 � ξ � ξ2, where ξ1 = ln[(1 + c2/r2

1 )
1/2 − c/r1] and ξ2 =

ln[(1 + c2/r2
2 )

1/2 − c/r2]. The surfaces ξ = ξ1 and ξ = ξ2 coincide with the surfaces of
the inner and outer cylinders, respectively. The plane η = 0 intersects the duct along
the wide part of the gap, and the plane η = π, along its narrow part.

Numerical solution to the system (2.2)–(2.4) is obtained by using the method
described in Nikitin (2006b). It exploits a second-order-accurate conservative finite-
difference scheme of spatial discretization and a third-order-accurate semi-implicit
Runge–Kutta method for time advancement. The Poisson equation for the pressure
is solved iteratively by using the fast Fourier transform in the z-direction and a
combination of the conjugate-gradient method and the fast cyclic reduction method
of Swarztrauber (1974) in the (ξ, η)-plane.

The numerical procedure can be described as follows. Starting with some initial
three-dimensional velocity field, the governing equations are integrated in time until
a statistically steady state is reached. Then, the mean flow and turbulence statistical
quantities are obtained by further time-advancing and averaging both in time and
along the homogeneous z-direction. The flow in a limiting turbulent regime is
statistically symmetric about the plane y = 0. Statistical sampling is further increased
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Wide gap Narrow gap

(
r = λ
ξ )+ inner 1.2 0.39
(
r = λ
ξ )+ outer 1.1 0.19
(r1
θ = λ
η)+ inner 1.4 3.1
(r2
θ = λ
η)+ outer 3.6 4.2

z+ inner 15.1 10.5

z+ outer 14.2 9.8

Table 1. Grid resolutions.

by the averaging over the two symmetric parts of the flow. The result of this averaging
procedure is that the mean fields depend on ξ and η only and are symmetric about
the plane y = 0. In what follows, the averaging is denoted by angular brackets; a
quantity f ′ means an instantaneous fluctuation of f , i.e. f = 〈f 〉 + f ′.

In this paper, we present the results obtained at Reynolds number Re = 8000 and
Prandtl number Pr = α/ν = 1 (α = κ/(ρcp) is the thermal diffusivity of the fluid) for
the duct with the diameter ratio γ = 0.5 and the eccentricity e = 0.5. Simulation was
performed with a streamwise period Lz = 12.56δ (δ = r2 − r1 is the mean clearance)
on a mesh with 128 × 512 × 256 grid nodes in the ξ -, η- and z-directions, respectively.
The non-uniform grid in the both cross-sectional coordinates ξ, η was constructed
ensuring node clustering in the most dynamically significant regions of the flow, in
the neighbourhood of rigid walls and in the wide gap of the duct (see figure 1a). The
grid sizes in the widest (η = 0) and the narrowest (η = π) regions of the flow domain
in the vicinity of the inner and outer cylinders are given in the table 1. Local viscous
length scales are used in each case. The data in table 1 demonstrate adequacy of
the grid to represent the smallest scales in the wall-bounded turbulent flow at given
Reynolds number.

In what follows, all data are presented in the non-dimensional form with the bulk
velocity Ub, the mean clearance δ and the wall-temperature difference T2 − T1 as the
velocity, length and temperature scales, respectively. Flow statistics presented in the
paper were obtained by the time averaging over the interval Tav = 2817. The adequacy
of the time-averaging interval was validated by comparing with the statistics obtained
with different intervals: Tav = 1428, 1045, 645. For the most characteristics shown in
the paper, the chosen interval is sufficiently long. Few cases, where the time-averaging
interval is not fully adequate are discussed below.

In order to provide the broadest possible perspective, the details of the flow and
temperature fields over the cross-sectional plane are displayed in several different ways.
The first is in the form of contour maps, while the second and third show profiles along
the lines normal to the bounding walls, normalized either by conventional scales, or
by the local wall variables. The set of nine normal-to-walls lines η = ηj , j = 0, . . . , 8
chosen for the data presentation are equally spaced in the circumferential direction
within the upper half of the cross-section. The averaged flow is symmetric about the
plane y = 0, therefore the lower-half distributions are not shown. The location of the
nine lines within the duct’s cross-section is shown in figure 2 and the values of ηj are
given in table 2. For simplicity we call the profiles along the lines η = ηj as radial
profiles, although the lines η = constant are not straight lines except the η = 0 and
η = π. The radial profiles at each η are given as functions of distance d measured
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j 0 1 2 3 4 5 6 7 8

ηj/π 0 0.0723 0.1489 0.2348 0.3329 0.4510 0.6053 0.7903 1.0

Table 2. Values of η along the data presentation lines.

η0

η1

η2

η3
η4

η5

η6

η7

η8

Figure 2. Location of lines chosen for data presentation.

along the line from the midpoint between the cylinder walls,

d =

∫ ξ

ξ1

λ(ξ, η) dξ − h

2
, h(η) =

∫ ξ2

ξ1

λ(ξ, η) dξ. (2.7)

Here, h(η) is the local duct’s clearance. When the data are normalized by the local
wall variables uτ =

√
τw/ρ and lτ = ν/uτ defined by the local wall shear stress τw

either on the inner or the outer wall, the distance to the wall d+ is measured along
straight lines perpendicular to the respective wall. Normalization by the wall variables
is denoted by a superscript +.

Circumferential variation of flow characteristics is presented in the paper in the form
of functions of bipolar coordinate η. Each value of η corresponds to different angular
coordinates θ1 and θ2 on the inner and outer cylinder walls. The correspondence
between θ1, θ2 and η is given in figure 3.

3. Flow field simulation results
3.1. Wall friction and mean velocity

The law of friction in eccentric ducts is an issue of controversial discussions. The
most thorough measurement of the friction factor Cf = τw/0.5ρU 2

b was performed by
Jonsson & Sparrow (1966). In the definition of friction factor, τw is the wall friction
averaged along both bounding walls. It is related to the mean pressure gradient by

τw =
δ

2

(
−dp̂

dz

)
. (3.1)

Jonsson & Sparrow (1966) analysed the flows in eccentric ducts with diameter ratios
γ = 0.281, 0.561 and 0.75. For each of these ducts, eccentricity varied from zero
to unity. The Reynolds number range of the investigation extended from 18 000 to
180 000. The friction-factor information was correlated by a power-law relationship
of the type Cf = C/Ren. It was found that an n value of 0.18 provided the most
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Figure 3. Angular coordinates on the inner θ1 and the outer θ2 cylinder walls
as functions of bipolar coordinate η.

satisfactory correlation for all Reynolds numbers, diameter ratios and eccentricities.
Different Reynolds number exponents, larger than 0.18 were suggested in Deissler &
Taylor (1955) and in Dodge (1963). Regarding the value of C, it depends both on
γ and e. In general, for a fixed Reynolds number and diameter ratio, the friction
factor decreases with increasing eccentricity. Kacker (1973) experimentally deduced
the relation Cf = 0.0445Re−0.196 for the eccentric annulus with γ = 0.176 and
e = 0.475 as well as for the pipe with two rods located off-centre. Nouri et al. (1993)
measured the friction factor in a duct with γ = 0.5 for three values of eccentricities,
e = 0, 0.5 and 1. They found that at Re = 26,600 the friction factor in the concentric
annulus was about 8 % larger than that for smooth circular pipe. In the eccentric
ducts Cf was lower than in the concentric one by 8 % and 22.5 % for e = 0.5 and
e = 1, respectively.

In our simulation, the friction factor was Cf = 8.28 × 10−3. This value is almost
four times larger than that in the laminar flow at the same Reynolds number, where
Cf = 2.21×10−3 and is very close to the friction factor for a circular pipe as predicted
by the Blasius formula Cf = 0.0791Re−0.25; the difference is −1.0 %. Thus, our data
agree with the Nouri et al. (1993) prediction for the eccentric duct.

Distribution of the local wall shear stress τw,z along the inner and the outer walls
is shown in figure 4. Shear stress on the inner wall is 10 %–15 % higher than that on
the outer wall everywhere along the perimeter. Laminar flow distributions are also
shown in figure 4 giving an immediate idea of rising the friction force in turbulent
flow.

In what follows, we use the upper-case letters to denote mean values of the pressure
and velocity components: P ≡ 〈p〉, Uz ≡ 〈uz〉 and so on. Mean velocity distribution
over the duct’s cross-section is shown in figures 5 and 6 and compared with that in
the laminar flow. The latter is a solution to the equation

ν

λ2

(
∂2Uz

∂ξ 2
+

∂2Uz

∂η2

)
− 1

ρ

dp̂

dz
= 0. (3.2)

Radial profiles in the laminar flow have almost parabolic shape for each η, while
in the turbulent flow the profiles have typical turbulent shape. The mean velocity
distribution in the turbulent flow is significantly flattened out both in the radial and
in the circumferential direction compared with that in the laminar flow. Maximal
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Figure 4. Local wall shear stress distribution in laminar flow (lower lines) and turbulent
flow (upper lines). Dashed lines: inner wall; solid lines: outer wall.
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Figure 5. Mean velocity contours. (a) Laminar flow; (b) turbulent flow.
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Figure 6. Mean velocity profiles. (a) Laminar flow; (b) turbulent flow.

velocities in the wide and in the narrow gaps are 1.36 and 0.85, respectively, in the
turbulent flow and 2.37 and 0.29 in the laminar flow. The profiles are slightly inclined
towards the inner wall in the both flows: the maximum velocity occurred at locations
closer to the inner wall. The same inclination of turbulent velocity profile in the
wide gap was observed experimentally by Nouri et al. (1993) in the duct with the
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Figure 7. Mean-velocity profiles: (a) comparison of present simulation (lines) with experiment
Nouri et al. (1993) (symbols), solid line and closed symbols correspond to the wide gap (η = 0),
dashed line and open symbols correspond to the narrow gap (η = π); (b) wide-gap profiles:
closed symbols correspond to inner profile, open symbols correspond to outer profile, solid
line: mean velocity in a plane channel flow at Reτ = 211, dashed line: U+

z = 2.5 log d+ + 5.0.

same eccentricity and diameter ratio and close Reynolds number Re = 8900. Mean
velocity profiles of present simulation in the wide and narrow gaps are compared
with experimental data of Nouri et al. (1993) in the figure 7(a). The agreement is very
good in both cases.

It is a common practice to represent turbulent velocity profiles in duct flow in
terms of the so-called law of the wall. The validity of the universal logarithmic mean
velocity distribution

U+
z = A log d+ + B (3.3)

in eccentric annulus is discussed in a number of investigations. In their analysis
Deissler & Taylor (1955) assumed that the law of the wall with the constants
A = 2.78 and B = 3.8 is valid everywhere in the duct along the lines perpendicular
to the walls of the annulus. The measurements of Jonsson & Sparrow (1966) did
not substantiate this assumption. They found that in a concentric annulus the inner
profiles lie substantially lower than the outer ones. After inspecting three different
diameter ratios they suggested expression (3.3) with constants A = 2.44, B = 4.9
for inner profiles and A = 2.56, B = 4.9 for outer profiles. In eccentric case a fair
agreement with the universal logarithmic distribution was observed only for outer
profiles when θ2 is no larger than π/2 or 2π/3. At larger angles experimental points
lie significantly higher than the universal line. For the inner profiles the universal
logarithmic distribution in the wide gap was observed only for the largest diameter
ratio γ = 0.75 duct. A similar conclusion that the law of the wall in eccentric annulus
is valid for the outer wall except in the smallest gap, but the near-inner-wall flow is
not represented by a logarithmic region particularly in the smallest gap, was derived
by Nouri et al. (1993).

In our simulation, the inner and outer profiles in the widest gap are very close
to each other down to about d+ = 100+, when normalized by the corresponding
local-wall scales (see figure 7b). In the region 30 < d+ < 100 they both are described
reasonably well by the correlation U+

z = 2.5 log d+ + 5.0. Also shown in figure 7(b) is
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Figure 8. Mean velocity profiles. (a) Inner profiles; (b) outer profiles.

mean velocity profile obtained by Gilbert & Kleiser (1991) in DNS of plane channel
flow at Reτ = 211. It is taken from the DNS database of turbulence and heat transfer
available online (http://www.thtlab.t.u-tokyo.ac.jp/DNS/dns database.html).

Mean velocity profiles U+
z (d+) along the lines η = ηj are shown in figure 8. To

exclude possible effect of the small-scale irregularities in the τw distribution, the wall
shear stress for each radial profile ηj was averaged over the interval [0.5(ηj−1 +
ηj ), 0.5(ηj + ηj+1)]. Although the Reynolds number in present simulations was
significantly lower than that in the cited experimental investigations, our results
are in good qualitative agreement with experiment. The logarithmic regions in the
velocity profiles may be detected in the wide gap, η � η3, while the narrow-gap
profiles lie substantially higher than the logarithmic line. The logarithmic distribution
with constants A = 2.65 and B = 4.5 is clearly visible in the outer profiles. The
logarithmic region in the inner profiles is less pronounced and has less steep slope.
The corresponding constants are A = 2.35 and B = 5.5.

Systematic deviation of the narrow-gap profiles from the logarithmic line in our
case may be attributed to a small local Reynolds number effect. Distribution of the
local Reynolds number Re local along circumferential direction is shown in figure 9.
Re local(η) is based on the average velocity along a line η = constant and on the
local clearance of the duct h(η) defined in (2.7). Dashed line in the figure 9 presents
distribution of the Reynolds number Reτ,local(η) based on the half of the local duct’s
clearance and the local friction velocity (calculated by the wall shear stress, averaged
over two walls). Reynolds number Re local decreases from 7050 in the wide gap down
to 1300 in the narrow gap. In this section Reτ,local is as small as 52 which is below the
smallest Reτ = 64 of turbulence existence in a plane channel flow found by Tsukahara
et al. (2005).

3.2. Reynolds stresses

Distribution of Reynolds stresses 〈u′
iu

′
j 〉 over the duct cross-section is shown in

figure 10 in the form of radial profiles. The most of the data shown in figure 10
are averaging independent. This, however, is not fully true for the statistics reflecting
the azimuthal inhomogeneity of the flow, i.e. 〈u′

ξu
′
η〉 and 〈u′

ηu
′
z〉 (in azimuthally

homogeneous flow, such as the flow in concentric annulus, these statistics are zero).
The corresponding profiles should be treated with a certain care. The idea, how
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Figure 9. Local Reynolds number distribution. Solid line: Relocal; dashed line: Reτ,local .

different statistics depend on the time-averaging interval Tav may be obtained from
figure 11. In this figure, the profiles of 〈u′

zu
′
z〉 and 〈u′

ξu
′
η〉 (the latter characteristic

is the most sensitive to time-averaging interval) are shown for one particular radial
section, η = η4, but for different time-averaging intervals: Tav = 645, 1045, 1428 and
2817. One can see almost complete coincidence of all profiles of 〈u′

zu
′
z〉 proving the

adequacy of averaging, while some quantitative (but not qualitative) modifications
are present in the 〈u′

ξu
′
η〉 profiles for different Tav .

The shape of the normal stresses 〈u′
iu

′
i〉 is fairly predictable in the most part

of the duct cross-section. Normal stresses exhibit a typical behaviour peculiar to
wall-bounded turbulent flows with maximal values in the near-wall region. The
only exception is the atypical increase in the intensity of circumferential velocity
fluctuations in the narrow part of the duct. Shear stress 〈u′

ξu
′
z〉 is also typical to

wall-bounded flows. Its shape may be explained by considering wall-normal velocity
fluctuations acting across the longitudinal mean velocity gradient: a positive wall-
normal velocity fluctuation leads to a negative fluctuation of the uz near the inner
cylinder wall, where ∂Uz/∂ξ is positive, and to a positive fluctuation of the uz near
the outer cylinder wall, where ∂Uz/∂ξ is negative. As a result, shear stress 〈u′

ξu
′
z〉 is

negative in the inner region and positive in the outer one. The analogous consideration
is valid for the explanation of the shape of the 〈u′

ηu
′
z〉. Circumferential gradient of

the mean velocity, ∂Uz/∂η is negative everywhere in the upper half of the duct cross-
section, thus, a positive velocity fluctuation of the η-component leads to a positive
fluctuation of the z-component and vice versa. Hence, 〈u′

ηu
′
z〉 is positive everywhere

in the upper half of the duct and negative in the lower half.

3.3. Quadrant analysis and streaky structures

The qualitative similarity in the shape of the wide- and narrow-gap velocity statistics
shown in the figures 8 and 10 suggests that essentially the same physics lies behind the
turbulence in each radial section of the duct. This supposition gets further support
by quadrant analysis of the Reynolds shear stresses in different parts of the duct.
The quadrant analysis, proposed in Willmarth & Lu (1972) and Brodkey, Wallace &
Eckelmann (1974), provides the detailed information on the contribution of different
flow events to the turbulence production. The analysis divides the Reynolds shear
stress into four categories Q1–Q4 according to the signs of longitudinal u′

z and wall-
normal u′

n velocity fluctuations. The contribution to the Reynolds shear stress from
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Figure 10. Profiles of Reynolds stresses components.

each quadrant in the (u′
z, u

′
n) plane is shown in figure 12. The data for the widest

and the narrowest gap are given in figure 12 and compared with corresponding
distributions in plane channel flow. The quadrant analysis in the present study was
conducted by analysing a single instantaneous flow field, thus, no time averaging and
only averaging over the z-direction was applied. Nevertheless, the data presented in
figure 12 demonstrate very similar, and not only qualitative, but also quantitative
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behaviour in both wide and narrow gaps of the eccentric annulus and in plane
channel flow. This behaviour is characterized by the dominance of so-called sweep
events (Q4) in the immediate vicinity of the wall (d+ � 12) which is replaced by the
ejection events (Q2) at further distance from the wall.

The self-sustaining process of turbulence regeneration in wall-bounded flows is
associated with the existence of longitudinal streaks in near-wall velocity field. The
streaks are most pronounced in the region of buffer layer of the mean velocity profile.
The footprints of streaks can be detected on the wall surface in the field of velocity
gradient. Figure 13 presents instantaneous distribution of the fluctuation part of the
longitudinal velocity gradient ∂u′

z/∂n on the surfaces of the inner and outer cylinders.
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Figure 13. Footprints of longitudinal velocity streaks on the cylinder surfaces.

Streaky structures are clearly visible all over the surfaces including the narrow part
of the duct, where the intensity of streaks is, however, significantly lower than that in
the wide part.

3.4. Secondary motion

Anisotropy of Reynolds stresses in the circumferential direction causes the appearance
of a secondary motion in the cross-sectional plane of the duct. The streamlines of
the secondary motion are shown in figure 14(a). The secondary motion exhibits a
pair of main well-pronounced counter-rotating vortices on each side of the plane of
symmetry. These vortices transfer the high-momentum fluid from the wide to the
narrow parts of the duct along the midline of the gap and return the slow-momentum
fluid along the duct walls. The vortex attached to the inner cylinder is rather more
intense compared to its partner attached to the outer cylinder. The maximum velocity
in the secondary motion is 0.0135 and is attained in the vicinity of the inner wall.

Contour map of secondary-motion intensity
√

U 2
ξ + U 2

η is shown in figure 14(b).
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Figure 14. (a) Streamlines of secondary motion and (b) its intensity
√

U 2
ξ + U 2

η × 100.

Solid and dashed streamlines correspond to a counter-clockwise and a clockwise rotation,
respectively.

Similar secondary-motion pattern with two circulation cells on each half of the duct
with the larger vortex located close to the inner wall was detected experimentally by
Nouri et al. (1993). They reported the secondary-motion value of 2.5 % of the bulk
velocity in the duct with an eccentricity of 1.0 which was 35 % greater than that with
an eccentricity of 0.5. However, the direction of fluid rotation in the secondary-motion
cells measured by Nouri et al. (1993) suggests transport of fluid from wider to narrow
regions along the duct walls which is opposite to ours. It should be noted, that
direction of secondary motion measured by Nouri et al. (1993) is atypical to turbulent
flows in non-circular ducts. The existing experimental and DNS data for ducts with
rectangular (Gavrilakis 1992; Nikitin 1997) and elliptic (Nikitin & Yakhot 2005;
Voronova & Nikitin 2007) cross-section point to the opposite direction of secondary
motion with fluid transport from the wider part to the narrow along the middle of
the gap and return transport along the walls.

In experiments of Kacker (1973) only one circulation cell was detected on each half
of the eccentric duct cross-section. It is attached to the inner cylinder and is similar to
our largest cell of the two. It should be noted that the experiments of Kacker (1973)
were conducted in the duct with diameter ratio γ = 0.18 which is very different from
ours γ = 0.5. It is also possible that the smaller circulation cell was not detected in
Kacker (1973) because of its small intensity.

The secondary-motion pattern shown in figure 14(a) was obtained by the averaging
of the flow in time, along the streamwise direction and about the symmetry plane
y = 0. As it was noted in the context of Reynolds stresses, the time-averaging
interval Tav = 2817 is not fully adequate for the characteristics reflecting azimuthal
inhomogeneity of the flow. It is unlikely, however, that the smaller circulation cell in
the secondary motion appeared as a result of the averaging procedure or inadequacy
of the time-averaging interval. Figure 15 presents secondary-motion patterns obtained
with no averaging over the plane y = 0 and with two very different time-averaging
intervals. One can see from the figure that in spite of some difference in fine details,
the main pattern with two circulation cells in each half of the duct cross-section is
represented well in both cases.

3.5. On the forces acting on the duct walls

The presence of the secondary motion implies the existence of a non-zero pressure
force

FP,x = −
∫ 2π

0

P (n, i)λ dη (3.4)
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Figure 15. Streamlines of secondary motion with no averaging about symmetry plane y = 0.
Time-averaging intervals: (a) Tav = 1045; (b) Tav = 2817.
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Figure 16. (a) Pressure distribution on the cylinders wall; (b) circumferential component of
the wall shear stress. Dashed lines: inner cylinder; solid lines: outer cylinder.

acting on each of the cylinders. From the η-component of the momentum equation it
follows that on the cylinder surfaces

∂P

∂η
= ρνλ−1 ∂2Uη

∂ξ 2
. (3.5)

Thus, the inhomogeneity of the pressure distribution around the duct walls is caused
by the presence of the secondary motion. The main secondary-motion pattern shown
in the figure 14 suggests that ∂2Uη/∂ξ 2 is positive on a large part of both cylinders,
which means that the wall pressures on both cylinders in the narrow part of the duct
is greater than those in the wide part. Integration of (3.5) supports this conjecture.
Pressure distribution on the cylinders wall is shown in figure 16(a). A free constant
of the integration is chosen so that P = 0 on the inner cylinder at η = 0. It is readily
seen from figure 16(a) that the pressure force acts on the cylinders in the opposite
directions.
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Apart from the pressure force there is a friction force caused by the circumferential
component of the wall shear stress τw,η = ρν∂Uη/∂n on the cylinders surfaces. In the
last expression n stands for the normal vector pointing from the rigid wall into the
fluid. It is readily seen from the figure 14(a) that τw,η is negative on the inner wall, i.e.
the friction force acts on the inner cylinder from narrow gap towards the wide gap.
Concerning the outer cylinder, there are regions of both negative and positive shear
stress. The distribution of τw,η along the inner and outer walls is shown in figure 16(b).
By comparing with the axial component of the wall shear stress τw,z shown in the
figure 4 one can see that the maximum of the circumferential component is about
2 % of the axial component and is attained on the inner cylinder. The integral friction
force due to τw,η acting on each cylinder (per unit length) is directed along the x-axis
(y-component of the force is zero because of the symmetry over the plane y = 0) and
is expressed by the integral

Fτ,x =

∫ 2π

0

τw,η(kη, i)λ dη, (3.6)

where i and kη are the unit vectors in the x and η directions, respectively. Fτ,x is
estimated as 2 × 10−4 for the inner cylinder and 5 × 10−5 for the outer one. For
comparison, the friction force Fτ,z acting in the streamwise direction due to the axial
component of the wall shear stress is equal to 2.7 × 10−2 for the inner and 5.1 × 10−2

for the outer cylinder.
In aggregate, the forces Fx = Fτ,x + FP,x acting on the inner and the outer cylinder

are about ±4.5×10−3. The forces act on the cylinders in the opposite directions along
the x-axis tending to eliminate the eccentricity of the duct.

Probably, the estimation of friction force acting on the outer cylinder is not accurate,
because the time-averaging interval used in the paper is not fully adequate for settling
the secondary flow in the vicinity of the outer cylinder. Most importantly, however,
this value is in any case much less than the pressure forces (by 2 orders of magnitude)
and thus it cannot change the overall conclusion about the direction of forces acting
on the cylinders.

4. Thermal field quantities
4.1. Mean temperature

Mean temperature distribution over the duct’s cross-section is shown in figure 17(a) in
the form of contour map and in figure 17(b) in the form of radial profiles. Mean flow
isotherms are close to circular coordinate lines ξ = constant, as these are in the laminar
flow, where temperature is presented by the expression T (ξ, η) = (ξ − ξ1)/(ξ2 − ξ1).
However, dependence of the mean temperature on the ξ variable in turbulent regime
is strongly nonlinear, as it is seen in the figure 17(b).

The average temperature in the flow is Tb = 0.65 (Tb = 0.63 in the laminar flow).
Defining Nusselt number as Nu = DhH/κ, H = Q/S|Tw − Tb|, where H is the heat
transfer coefficient, Dh = 2δ is the hydraulic diameter, Q is the heat flux, Tw is the
wall temperature and S is the surface area of respective wall, one obtains Nu1 = 24.2
and Nu2 = 22.6 for the inner and outer walls, respectively. Corresponding values
in the laminar flow are 5.35 and 4.47. The local Nusselt numbers Nulocal(η) on the
inner and outer duct walls are defined by using the local heat fluxes and local duct
clearance h(η) as a length scale. Nulocal(η) distributions are shown in figure 18(a).
On the both walls the local Nusselt numbers decrease monotonically with η from the



112 N. Nikitin, H. Wang and S. Chernyshenko

0
.1

0
.1 0

.2

0.
2

0
.3

0.
3

0.4 0.5

0
.5

0
.6

0.6

0
.7

0.7

0
.7

0.8

0.8

0.9

0.9

0
.9 1

1

1

(a)

(b)

0–0.4–0.8 0.4 0.8
0

0.2

0.4

0.6

0.8

1.0

η0

η8

d

�
T
�

Figure 17. (a) Mean temperature contours; (b) mean temperature profiles.
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inner cylinder; solid line: outer cylinder.

values close to the corresponding global Nusselt numbers down to the values in the
laminar flow. Thus, the flow in the narrowest gap may be considered as laminar in
terms of the local Nusselt number. However, as it will be shown below, this region
cannot be considered as laminar in terms of the intensity of temperature fluctuations.

Figure 18(b) presents circumferential variation of the temperature gradient on the
cylinder walls. Because of the imposed streamwise periodicity of the temperature field
and isothermal boundary conditions on the cylinder walls, the mean heat fluxes are
the same on both walls. Since the surface area of the outer boundary is twice as that
of the inner one, on average the local heat flux and wall temperature gradient on
the inner wall are twice as large as they are on the outer wall. As it is seen in the
figure 18(b) this ratio holds approximately at each η. Mean temperature gradient in
the narrow gap is on average three times larger than it is in the wide gap. Nevertheless,
the wall gradient is maximal in the wide gap on the both cylinders. The small value
of average gradient in the wide gap is due to the temperature plateau between the
wall regions (see figure 17b).

4.2. Temperature fluctuations

Radial profiles of temperature variance 〈T ′T ′〉 and of velocity–temperature
correlations 〈T ′u′

i〉 are shown in figure 19. For each η, the temperature variance
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Figure 19. Profiles of temperature variance and velocity–temperature correlations.

(and the intensity of temperature fluctuations Trms , which is 〈T ′T ′〉0.5) near the inner
cylinder wall is significantly higher than that near the outer wall. In the wide-gap
region, temperature fluctuations are about two times more intense near the inner wall
than those near the outer one. This suggests that the main mechanism of temperature
fluctuations in the flow is the action of radial velocity fluctuations across the mean
temperature gradient which is twice as steep in the inner wall region as in the outer
wall one. The main production term in the equation for the temperature variance is
−〈T ′u′

ξ 〉GT , where GT = λ−1∂〈T 〉/∂ξ is the mean temperature gradient in the wall-
normal direction. In the wide gap the correlation −〈T ′u′

ξ 〉 in the inner-wall region
is two times higher than that in the outer-wall region (see figure 19b). This is in
agreement with the amplitude ratio of the temperature fluctuations (figure 19a) and
uξ -velocity fluctuations (figure 10a) in the inner- and outer-wall regions.

Another fact worth to be mentioned is that the intensity of temperature fluctuations
is anomalously high in the narrow gap compared with that in the wide gap, taking
in account relatively low-production term −〈T ′u′

ξ 〉GT in the narrow-gap region. It
may be speculated that the reason for this disproportion consists in the following.
In the wide-gap region the temperature fluctuations being produced near the wall
are then transferred away from the wall where the mean-temperature gradient is not
so steep and conditions for the production of temperature fluctuations are not so
favourable. Whereas in the narrow gap, the temperature fluctuations being produced
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on the background of steep gradient are accumulated in the same place with less
transfer to other flow regions.

The shape of 〈T ′u′
z〉-correlation profiles (figure 19d ) confirms the suggestion that in

the background of the temperature- and uz-fluctuations lies in the same mechanism,
with heat and momentum transfer due to wall-normal velocity fluctuations acting
across the temperature and mean velocity gradients. The maxima of |〈T ′u′

z〉|
near each wall are proportional to Trmsuz,rms . Correlation coefficient ρ(T , uz) =
〈T ′u′

z〉/(Trmsuz,rms) is as large as ±0.95 near the inner and outer walls, respectively.

5. Summary and discussion
A direct numerical simulation of a turbulent flow in an eccentric annular duct with

diameter ratio γ = 0.5 and eccentricity e = 0.5 was carried out with 128 × 512 × 256
mesh points at a Reynolds number of 8000, based on the bulk velocity and hydraulic
diameter. A second-order finite-difference conservative scheme is used for the spatial
discretization in conjunction with a third-order time advancement scheme.

Simulation results are in overall qualitative and quantitative agreement with the
existing experimental data. The value of friction factor obtained in simulation
coincides with the friction factor for a circular pipe as predicted by the Blasius
formula. This is in agreement with the Nouri et al. (1993) prediction for the eccentric
duct. Mean velocity profiles agree very well with measurements of Nouri et al. (1993)
both in the wide and narrow gaps. When mean velocity and distance to the wall are
normalized by the wall variables defined by the local wall shear stress, the logarithmic
behaviour in the mean velocity profiles is visible only in the wide-gap region, whereas
in the narrow-gap region mean velocity profiles lie significantly higher. In the wide-
gap region, where the logarithmic layer can be detected in the mean velocity profiles,
the inner profiles lie substantially lower than the outer ones. These observations agree
with experimental findings of Jonsson & Sparrow (1966) and Nouri et al. (1993).

Anisotropy of Reynolds stresses in the circumferential direction causes the
appearance of a secondary motion in the cross-sectional plane of the duct. The
secondary motion obtained in the present simulation exhibits a pair of main well-
pronounced counter-rotating vortices on each side of the plane of symmetry. The
maximum velocity in the secondary motion is 0.0135 and is attained in the vicinity of
the inner wall. The secondary-motion pattern of the present study is similar to that
of Nouri et al. (1993). However, the direction of fluid rotation reported in Nouri et al.
(1993) is opposite to present results. We cannot give any rational explanation of this
discrepancy apart of noting that direction of secondary motion reported in Nouri
et al. (1993) disagrees with general form of known turbulent secondary motions in
non-circular ducts. Secondary motion reported by Kacker (1973) exhibits only one
circulation cell in each half of the eccentric duct cross-section, which resembles the
largest cell of our simulation. In our opinion this disagreement can be explained
by the difference in the flow geometry or inability of experimental detection of the
extremely low-amplitude motion in the smaller circulation cell.

Even in the narrowest part of the annulus the calculated flow has many features of
a turbulent flow: the mean profile is more filled than the laminar parabolic profile,
the distributions of the Reynolds stresses are mostly of turbulent character, there
are streaks, sweeps dominate ejections near the wall and vice versa away from the
wall. However, in the narrowest part of the annulus the local Reynolds number based
on the wall shear stress is below the value for which the flow can be turbulent in
a plane channel. Hence, in this part of the annulus turbulence can be expected to
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be not self-sustaining. One possible explanation of the physical mechanism by which
turbulence is sustained in the narrowest part is suggested by figure 10(b). As can
be seen from this figure, the amplitude of the circumferential velocity fluctuations
is anomalously large in the narrow part of the channel. When a volume of fluid is
in the narrowest area, turbulence recedes. However, before it decays completely, a
large circumferential fluctuation moves this volume to the neighbouring wider part
of the annulus, where turbulence recovers since it can sustain itself there. While other
physical mechanisms of sustaining turbulence in the narrow part of the annulus can
probably be suggested, one can conclude that even though the flow considered has no
laminar regions, it will present a considerable challenge for semi-empirical turbulence
modelling.

The present study revealed a large number of flow details which have not been
documented so far. In particular, the components of the Reynolds stress tensor,
temperature–velocity correlations and some others were obtained for the first time
for such kind of a flow. The results of the paper will serve as a benchmark test case
for turbulence modelling, specifically for models intended to be used for flows with
partly turbulent regimes.

This research was supported by EPSRC under grant EP/D050871/1. The work of
NN was supported also by the Russian Foundation for Basic Research under grant
08-01-00489-a.
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